1086 reflections with  $I > 2\sigma(I)$ 

3 standard reflections

every 97 reflections

intensity decay: 1.5%

 $R_{\rm int} = 0.089$ 

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# 2,4,6-Trichlorophenol

## Sandra Patricia González Martínez<sup>a</sup> and Sylvain Bernès<sup>b\*</sup>

<sup>a</sup>Preparatoria 3, UANL, Félix U. Gómez y Madero, Monterrey, NL, Mexico, and <sup>b</sup>DEP Facultad de Ciencias Químicas, UANL, Guerrero y Progreso S/N, Col. Treviño, 64570 Monterrey, NL, Mexico

Correspondence e-mail: sylvain\_bernes@hotmail.com

Received 23 August 2007; accepted 28 August 2007

Key indicators: single-crystal X-ray study; T = 297 K; mean  $\sigma$ (C–C) = 0.004 Å; R factor = 0.040; wR factor = 0.109; data-to-parameter ratio = 15.7.

In the title compound,  $C_6H_3Cl_3O$ , the molecular geometry approximates  $C_{2\nu}$  symmetry. The hydroxyl H atom lies in the plane of the ring; the closest approach between the centroids of aromatic rings of symmetry-related molecules exceeds 3.8 Å.

#### **Related literature**

For the carcinogenicity of the title molecule, see US Department of Health and Human Services (2005). For the polymorphism observed for a related molecule, pentafluorophenol, see Das et al. (2006). Metal-ion complexes including the phenolate ion of the title compound as ligand have been reported; see Gökaugac et al. (1999); Wesolek et al. (1994); Zechmann et al. (2000).



#### **Experimental**

#### Crystal data

| C <sub>6</sub> H <sub>3</sub> Cl <sub>3</sub> O | V = 726.1 (6) Å <sup>3</sup>              |
|-------------------------------------------------|-------------------------------------------|
| $M_r = 197.43$                                  | Z = 4                                     |
| Monoclinic, $P2_1/c$                            | Mo $K\alpha$ radiation                    |
| $a = 3.8181 (18) \text{\AA}$                    | $\mu = 1.18 \text{ mm}^{-1}$              |
| b = 15.742 (7)  Å                               | T = 297 (1) K                             |
| c = 12.127 (6) Å                                | $0.60 \times 0.20 \times 0.04 \text{ mm}$ |
| $\beta = 95.05 \ (4)^{\circ}$                   |                                           |
|                                                 |                                           |

#### Data collection

Siemens P4 diffractometer Absorption correction: Gaussian (XSCANS; Siemens, 1999)  $T_{\min} = 0.792, T_{\max} = 0.954$ 2445 measured reflections 1427 independent reflections

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.040$ | 91 parameters                                              |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.109$               | H-atom parameters constrained                              |
| S = 1.08                        | $\Delta \rho_{\rm max} = 0.28 \text{ e } \text{\AA}^{-3}$  |
| 1427 reflections                | $\Delta \rho_{\rm min} = -0.38 \ {\rm e} \ {\rm \AA}^{-3}$ |

Data collection: XSCANS (Siemens, 1999); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXTL-Plus (Sheldrick, 1998); program(s) used to refine structure: SHELXTL-Plus; molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL-Plus.

Support by PROVERICyT (IX Verano de la Investigación Científica y Tecnológica UANL) is acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2314).

#### References

- Das, D., Banerjee, D., Mondal, R., Howard, J. A. K., Boese, R. & Desiraju, G. R. (2006). Chem. Commun. pp. 555-557.
- Gökaugaç, G., Tatar, L., Kisakürek, D. & Ülkü, D. (1999). Acta Cryst. C55, 1413-1416.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.
- Sheldrick, G. M. (1998). SHELXTL-Plus. Release 5.10. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Siemens (1999). XSCANS. Version 2.31. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- US Department of Health and Human Services (2005). Report on Carcinogens, 11th ed. http://ntp.niehs.nih.gov/ntp/roc/eleventh/profiles/ s181trcp.pdf.
- Wesolek, M., Meyer, D., Osborn, J. A., De Cian, A., Fischer, J., Derory, A., Legoll, P. & Drillo, M. (1994). Angew. Chem. Int. Ed. Engl. 33, 1592-1594.

Zechmann, C. A., Boyle, T. J., Rodriguez, M. A. & Kemp, R. A. (2000). Polyhedron, 19, 2557-2564.

supplementary materials

Acta Cryst. (2007). E63, o3947 [doi:10.1107/S1600536807042080]

## 2,4,6-Trichlorophenol

## S. P. González Martínez and S. Bernès

### Comment

The title molecule has been used in the past as an antiseptic, a pesticide for wood, leather and glue preservation, and also as an antimildew treatment for textiles. However, production was discontinued in the 1980 s and the molecule is no longer used in the USA, mainly because its production process systematically affords small quantities of dioxins and dibenzofurans. This molecule is currently listed as "*reasonably anticipated to be a human carcinogen*" (US Department of Health and Human Services, 2005). The corresponding phenolate has been used as a ligand for transition and non-transition metal ions, *e.g.* Cu<sup>II</sup> (Gökaugaç *et al.*, 1999), Mn<sup>III</sup> (Wesolek *et al.*, 1994), or Mg<sup>II</sup> (Zechmann *et al.*, 2000).

The molecular structure (Fig. 1) approximates a  $C_{2v}$  symmetry. However, the molecule is placed on a general position. The hydroxyl H atom lies in the plane of the aromatic ring and is oriented toward Cl6. The corresponding site oriented toward Cl2 is not available for hydroxyl H atom, as, due to crystal symmetry, it would give a short intermolecular H…H contact.

Interestingly, two polymorphs of pentafluorophenol have been reported (Das *et al.*, 2006). For the Z' = 1 polymorph, hydroxyl H atom is placed 0.36 Å above the aromatic ring. A second polymorph, with Z' = 3, shows a variety of hydroxyl conformations. Two molecules are almost planar, with H deviations of 0.10 and 0.04 Å, while the third one has O—H bond almost normal to the aromatic ring, with the H atom placed 0.66 Å out of the benzene mean plane. In the same way, the title compound could present a degree of free rotation about the C—O bond, allowing the stabilization of polymorphic phases.

Regarding the crystal structure, no significant  $\pi$ ··· $\pi$  interactions are observed. The closest approach between centroids of aromatic rings of symmetry-related molecules is 3.818 Å.

## **Experimental**

A sample of the title compound was donated by the Chemistry Stores at Universidad Autónoma de Nuevo León (UANL), and used without previous recrystallization.

#### Refinement

All H atoms were found in a difference map, but their positions regularized in order to get an idealized geometry for C—H and O—H groups. Constrained bond lengths: 0.82 (hydroxyl OH) and 0.93 Å (aromatic CH). Isotropic displacement parameters for H atoms were fixed to  $U_{iso}(H1) = 1.5 U_{eq}(O1)$ ;  $U_{iso}(H3) = 1.2 U_{eq}(C3)$ ;  $U_{iso}(H5) = 1.2 U_{eq}(C5)$ .

Figures



Fig. 1. The structure of the title molecule, with displacement ellipsoids at the 50% probability level for non-H atoms.

## 2,4,6-Trichlorophenol

| $F_{000} = 392$                              |
|----------------------------------------------|
| $D_{\rm x} = 1.806 {\rm ~Mg~m^{-3}}$         |
| Melting point: 342 K                         |
| Mo $K\alpha$ radiation $\lambda = 0.71073$ Å |
| Cell parameters from 47 reflections          |
| $\theta = 6.0 - 12.4^{\circ}$                |
| $\mu = 1.18 \text{ mm}^{-1}$                 |
| T = 297 (1)  K                               |
| Plate, colourless                            |
| $0.60 \times 0.20 \times 0.04 \text{ mm}$    |
|                                              |
| $R_{\rm int} = 0.089$                        |
| $\theta_{\text{max}} = 26.0^{\circ}$         |
| $\theta_{\min} = 2.1^{\circ}$                |
| $h = -4 \rightarrow 2$                       |
| $k = -19 \rightarrow 1$                      |
| $l = -14 \rightarrow 14$                     |
| 3 standard reflections                       |
| every 97 reflections                         |
| intensity decay: 1.5%                        |
|                                              |

## Refinement

| Refinement on $F^2$             | Secondary atom site location: difference Fourier map     |
|---------------------------------|----------------------------------------------------------|
| Least-squares matrix: full      | Hydrogen site location: inferred from neighbouring sites |
| $R[F^2 > 2\sigma(F^2)] = 0.040$ | H-atom parameters constrained                            |

| $wR(F^2) = 0.109$                                              | $w = 1/[\sigma^2(F_o^2) + (0.0372P)^2 + 0.2366P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
|----------------------------------------------------------------|-------------------------------------------------------------------------------------|
| <i>S</i> = 1.08                                                | $(\Delta/\sigma)_{max} < 0.001$                                                     |
| 1427 reflections                                               | $\Delta \rho_{max} = 0.28 \text{ e} \text{ Å}^{-3}$                                 |
| 91 parameters                                                  | $\Delta \rho_{\rm min} = -0.38 \text{ e } \text{\AA}^{-3}$                          |
| Primary atom site location: structure-invariant direct methods | Extinction correction: none                                                         |

|                               |                    |                       |              |               | . 7   |
|-------------------------------|--------------------|-----------------------|--------------|---------------|-------|
| Fractional atomic coordinates | and isotropic or e | quivalent isotropic a | lisplacement | parameters (A | $l^2$ |

|     | x          | У            | Ζ            | $U_{\rm iso}*/U_{\rm eq}$ |
|-----|------------|--------------|--------------|---------------------------|
| Cl2 | 1.2802 (2) | 0.10705 (5)  | 0.52181 (6)  | 0.0599 (3)                |
| Cl4 | 0.6704 (3) | 0.06153 (5)  | 0.11139 (7)  | 0.0627 (3)                |
| C16 | 0.7136 (2) | 0.37081 (5)  | 0.29722 (6)  | 0.0587 (3)                |
| 01  | 1.1072 (7) | 0.28196 (14) | 0.48426 (17) | 0.0594 (6)                |
| H1  | 1.0670     | 0.3331       | 0.4822       | 0.089*                    |
| C1  | 0.9955 (8) | 0.23290 (17) | 0.3971 (2)   | 0.0414 (6)                |
| C2  | 1.0664 (7) | 0.14727 (19) | 0.4024 (2)   | 0.0420 (6)                |
| C3  | 0.9675 (8) | 0.09404 (17) | 0.3154 (2)   | 0.0445 (6)                |
| Н3  | 1.0169     | 0.0362       | 0.3200       | 0.053*                    |
| C4  | 0.7952 (8) | 0.12773 (17) | 0.2219 (2)   | 0.0437 (6)                |
| C5  | 0.7129 (7) | 0.21246 (18) | 0.2133 (2)   | 0.0413 (6)                |
| Н5  | 0.5911     | 0.2343       | 0.1498       | 0.050*                    |
| C6  | 0.8167 (8) | 0.26403 (17) | 0.3019 (2)   | 0.0408 (6)                |

# Atomic displacement parameters $(\text{\AA}^2)$

|     | $U^{11}$    | $U^{22}$    | U <sup>33</sup> | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-----------------|--------------|--------------|--------------|
| Cl2 | 0.0671 (5)  | 0.0637 (5)  | 0.0464 (4)      | 0.0052 (4)   | -0.0082 (3)  | 0.0143 (3)   |
| Cl4 | 0.0876 (6)  | 0.0460 (4)  | 0.0519 (4)      | -0.0112 (4)  | -0.0086 (4)  | -0.0119 (3)  |
| Cl6 | 0.0812 (6)  | 0.0372 (4)  | 0.0559 (5)      | 0.0080 (4)   | -0.0031 (4)  | -0.0018 (3)  |
| 01  | 0.0813 (15) | 0.0537 (12) | 0.0406 (11)     | 0.0020 (11)  | -0.0093 (10) | -0.0117 (9)  |
| C1  | 0.0489 (16) | 0.0407 (14) | 0.0347 (12)     | -0.0026 (13) | 0.0049 (12)  | -0.0037 (11) |
| C2  | 0.0429 (15) | 0.0453 (14) | 0.0374 (13)     | 0.0012 (12)  | 0.0023 (11)  | 0.0040 (11)  |
| C3  | 0.0533 (17) | 0.0355 (13) | 0.0447 (15)     | 0.0015 (13)  | 0.0033 (13)  | 0.0034 (11)  |
| C4  | 0.0529 (16) | 0.0389 (14) | 0.0396 (14)     | -0.0059 (13) | 0.0059 (12)  | -0.0031 (11) |
| C5  | 0.0465 (16) | 0.0427 (14) | 0.0338 (13)     | -0.0015 (12) | -0.0010 (11) | 0.0009 (10)  |
| C6  | 0.0466 (15) | 0.0337 (13) | 0.0419 (13)     | 0.0032 (12)  | 0.0032 (12)  | 0.0016 (11)  |

## Geometric parameters (Å, °)

| Cl2—C2 | 1.719 (3) | C2—C3 | 1.374 (4) |
|--------|-----------|-------|-----------|
| Cl4—C4 | 1.731 (3) | C3—C4 | 1.366 (4) |
| Cl6—C6 | 1.726 (3) | С3—Н3 | 0.9300    |
| O1—C1  | 1.347 (3) | C4—C5 | 1.372 (4) |
| O1—H1  | 0.8200    | C5—C6 | 1.377 (4) |
| C1—C2  | 1.375 (4) | С5—Н5 | 0.9300    |
| C1—C6  | 1.379 (4) |       |           |

# supplementary materials

| C1—O1—H1     | 119.6      | C3—C4—C5     | 122.1 (3)  |
|--------------|------------|--------------|------------|
| O1—C1—C2     | 118.5 (3)  | C3—C4—Cl4    | 119.2 (2)  |
| O1—C1—C6     | 123.5 (3)  | C5—C4—Cl4    | 118.7 (2)  |
| C2—C1—C6     | 117.9 (2)  | C4—C5—C6     | 117.7 (3)  |
| C3—C2—C1     | 121.5 (3)  | С4—С5—Н5     | 121.1      |
| C3—C2—Cl2    | 120.0 (2)  | С6—С5—Н5     | 121.1      |
| C1—C2—Cl2    | 118.5 (2)  | C5—C6—C1     | 122.1 (2)  |
| C4—C3—C2     | 118.7 (3)  | C5—C6—C16    | 120.0 (2)  |
| С4—С3—Н3     | 120.7      | C1—C6—Cl6    | 117.9 (2)  |
| С2—С3—Н3     | 120.7      |              |            |
| O1—C1—C2—C3  | -178.4 (3) | C3—C4—C5—C6  | 1.4 (4)    |
| C6—C1—C2—C3  | 0.9 (4)    | Cl4—C4—C5—C6 | -179.6 (2) |
| O1—C1—C2—Cl2 | 2.2 (4)    | C4—C5—C6—C1  | -0.4 (4)   |
| C6—C1—C2—Cl2 | -178.5 (2) | C4—C5—C6—Cl6 | -178.7 (2) |
| C1—C2—C3—C4  | 0.0 (4)    | O1-C1-C6-C5  | 178.5 (3)  |
| Cl2—C2—C3—C4 | 179.4 (2)  | C2—C1—C6—C5  | -0.7 (4)   |
| C2—C3—C4—C5  | -1.2 (4)   | O1—C1—C6—Cl6 | -3.1 (4)   |
| C2—C3—C4—Cl4 | 179.8 (2)  | C2—C1—C6—Cl6 | 177.7 (2)  |

Hydrogen-bond geometry (Å, °)

| D—H···A                                        | D—H  | $H \cdots A$ | $D \cdots A$ | D—H···A |
|------------------------------------------------|------|--------------|--------------|---------|
| O1—H1···Cl6                                    | 0.82 | 2.58         | 2.960 (3)    | 110     |
| O1—H1···Cl4 <sup>i</sup>                       | 0.82 | 2.81         | 3.418 (3)    | 132     |
| Symmetry codes: (i) $x$ , $-y+1/2$ , $z+1/2$ . |      |              |              |         |

